Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: a flash flood case study in the Western Mediterranean
نویسندگان
چکیده
The “Montserrat-2000” severe flash flood event which occurred over Catalonia on 9 and 10 June 2000 is analyzed. Strong precipitation was generated by a mesoscale convective system associated with the development of a cyclone. The location of heavy precipitation depends on the position of the cyclone, which, in turn, is found to be very sensitive to various model characteristics and initial conditions. Numerical simulations of this case study using the hydrostatic BOLAM and the non-hydrostatic MOLOCH models are performed in order to test the effects of different formulations of the boundary layer parameterization: a modified version of the Louis (order 1) model and a custom version of the E-` (order 1.5) model. Both of them require a diagnostic formulation of the mixing length, but the use of the turbulent kinetic energy equation in the E-` model allows to represent turbulence history and non-locality effects and to formulate a more physically based mixing length. The impact of the two schemes is different in the two models. The hydrostatic model, run at 1/5 degree resolution, is less sensitive, but the quantitative precipitation forecast is in any case unsatisfactory in terms of localization and amount. Conversely, the non-hydrostatic model, run at 1/50 degree resolution, is capable of realistically simulate timing, position and amount of precipitation, with the apparently superior results obtained with the E-` parameterization model.
منابع مشابه
Eta simulations of three extreme precipitation events: Sensitivity to resolution and convective parameterization
A versatile workstation version of the NCEP Eta Model is used to simulate three excessive precipitation episodes in the central United States. These events all resulted in damaging flash flooding and include 16-17 June 1996 in the upper Midwest, 17 July 1996 in western Iowa, and 27 May 1997 in Texas. The episodes reflect a wide range of meteorological situations: (i) a warm core cyclone in June...
متن کاملSensitivity Analysis of Convection of the 24 May 2002 IHOP Case Using Very Large Ensembles
This paper introduces the use of very large ensembles for detailed sensitivity analysis and applies this technique to study the sensitivity of model forecast rainfall to initial boundary layer and soil moisture fields for a particular case from the International H2O Project (IHOP_2002) field program. In total, an aggregate ensemble of over 12 000 mesoscale model forecasts are made, with each fo...
متن کاملHigh resolution simulations of a flash flood near Venice
During the MAP D-PHASE (Mesoscale Alpine Programme, Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region) Operational Period (DOP, 1 June–30 November 2007) the most intense precipitation event observed south of the Alps occurred over the Venice Lagoon. In the early morning of 26 September 2007, a mesoscale convective system formed in an are...
متن کاملThe use of radar in hydrological modeling in the Czech Republic ? case studies of flash floods
Flash flood induced by severe convection is the hydrometeorological phenomenon that is very difficult to forecast. However, the implementation of radar measurements , especially radar-based Quantitative Precipitation Estimate (QPE) and/or radar-based quantitative Precipitation Nowcast (QPN) can improve this situation. If the radar is able to capture the development of severe convection and can ...
متن کاملEnvironmental sensitivity of flash flood hazard using geospatial techniques
Flash flood has been increasing in the Khartoum area, Sudan due to geographical conditions and climatic change as heavy rainfall and high temperature, therefore the present work tried to estimate the sensitivity of flash flood. The present work proposes an advanced technique of flood sensitivity mapping using the method of analytical hierarchy process. Ten factors as elevation, slope, distance ...
متن کامل